MARTHANDAM COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Outcomes – Odd Semester 2023-24

CL M-	S	Th/ D4:1	C C-1- / C N		
Sl. No.	Semester	Theory/ Practical	Course Code / Course Name		
4)	R2021	ZEDI.			
1)	3	Theory	MA3355 Random Processes and Linear Algebra		
2)	3	Theory	CS3353 C Programming and Data Structures		
3)	3	Theory	EC3354 Signals and Systems		
4)	3	Theory	EC3353 Electronic Devices and Circuits		
5)	3	Theory	EC3351 Control Systems		
6)	3	Theory Plus Practical	EC3352 Digital Systems Design		
7)	3	Practical	EC3361 Electronic Devices and Circuits Laboratory		
8)	3	Practical	CS3362 C Programming and Data Structures Laboratory		
	3	Practical	Naan Muthalvan		
	R2021				
9)	5	Theory Plus Practical	EC3501 Wireless Communication		
10)	5	Theory	EC 3552 VLSI and Chip Design		
11)	5	Theory	EC3551 Transmission lines and RF Systems		
13)	5	Theory(Professional Elective -I)	CEC365 Wireless Sensor Network Design		
14)	5	Theory(Professional Elective II)	CEC 352 Satellite Communication		
	5	Theory(Professional Elective III)	CEC345 Optical Communication & Networks		
15)	5	Mandatory Course-I	MX3084 Disaster Risk Reduction and Management		
16)	5	Practical	EC3561 VLSI Laboratory		
	5	Practical	Naan Muthalvan-Internet of Things		
17)	R2017				
18)	7	Theory	EC8701 Antennas and Microwave Engineering		
19)	7	Theory	EC8751 Optical Communication		
20)	7	Theory	EC8791 Embedded and Real Time Systems		
21)	7	Theory	EC8702 Ad hoc and Wireless Sensor Networks		
22)	7	Theory (Professional Elective -III)	GE8071 Disaster Management		
23)	7	Theory (Open Elective – II)	OCH752 Energy Technology		
24)	7	Practical	EC8711 Embedded Laboratory		
25)	7	Practical	EC8761 Advanced Communication Laboratory		

Course Outcomes – Even Semester 2023-24

Sl.	Semester	Theory/ Practical	Course Code / Course Name		
No.					
	R2021				
1)	4	Theory	EC3452 Electromagnetic Fields		
2)	4	Theory	EC3401 Networks and Security		
3)	4	Theory	EC3451 Linear Integrated Circuits		
4)	4	Theory	EC3492 Digital Signal Processing		
5)	4	Theory	EC3491 Communication Systems		
6)	4	Theory	GE3451 Environmental Sciences and Sustainability		
7)	4	Practical	EC3461 Communication Systems Laboratory		
8)	4	Practical	EC3462 Linear Integrated Circuits Laboratory		
			Naan Muthalvan Course		
	R2021				
9)	6	Theory Plus Practical	ET3491 Embedded Systems and IOT Design		
10)	6	Theory Plus Practical	CS3491 Artificial Intelligence and Machine Learning		
11)	6	Open Elective– I	OEE351 Renewable Energy System		
12)	6	Professional Elective V	CEC338 EMI/EMC Pre Compliance Testing		
13)	6	Professional Elective VI	CBM355 Medical Imaging Systems		
14)	6	Professional Elective VII	CEC347 Radar Technologies		
15)	6	Mandatory Course- II	MX3089 Industrial Safety		
	R2017				
18)	8	Theory(Professional Elective IV)	GE8076 Professional Ethics in Engineering		
19)	8	Theory(Professional Elective V)	EC8094 Satellite Communication		
22)	8	Practical	EC8811 Project Work		

ODD Semester 2023-2024

III Semester B.E. ECE

MA3355 Random Processes and Linear Algebra

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.

CO2:Demonstrate accurate and efficient use of advanced algebraic techniques.

CO3:Apply the concept of random processes in engineering disciplines.

CO4:Understand the fundamental concepts of probability with a thorough knowledge of standard distributions that can describe certain real-life phenomenon.

CO5: Understand the basic concepts of one and two dimensional random variables and apply them to model engineering problems.

CS3353 C Programming and Data Structures

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Develop C programs for any real world/technical application.

CO2:Apply advanced features of C in solving problems.

CO3:Write functions to implement linear and non-linear data structure operations.

CO4:Suggest and use appropriate linear/non-linear data structure operations for solving a given problem.

CO5:Appropriately use sort and search algorithms for a given application.

CO6:Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval.

EC3354 Signals and Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:determine if a given system is linear/causal/stable

CO2: determine the frequency components present in a deterministic signal

CO3:characterize continuous LTI systems in the time domain and frequency domain

CO4:characterize discrete LTI systems in the time domain and frequency domain

CO5:compute the output of an LTI system in the time and frequency domains

EC3353 Electronic Devices and Circuits

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Explain the structure and working operation of basic electronic devices.

CO2: Design and analyze amplifiers.

CO3: Analyze frequency response of BJT and MOSFET amplifiers

CO4: Design and analyze feedback amplifiers and oscillator principles.

CO5: Design and analyze power amplifiers and supply circuits

EC3351 Control Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Compute the transfer function of different physical systems.

CO2: Analyse the time domain specification and calculate the steady state error.

CO3: Illustrate the frequency response characteristics of open loop and closed loop system response

CO4: Analyse the stability using Routh and root locus techniques.

CO5: Illustrate the state space model of a physical system and discuss the concepts of sampled data control system.

EC3352 Digital Systems Design

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Use Boolean algebra and simplification procedures relevant to digital logic.

CO2: Design various combinational digital circuits using logic gates.

CO3:Analyse and design synchronous sequential circuits.

CO4: Analyse and design asynchronous sequential circuits. .

CO5: Build logic gates and use programmable devices

Laboratory

EC3361 Electronic Devices and Circuits Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Characteristics of PN Junction Diode and Zener diode.

CO2:Design and Testing of BJT and MOSFET amplifiers.

CO3:Operation of power amplifiers.

CS3362 C Programming and Data Structures Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Use different constructs of C and develop applications

CO2:Write functions to implement linear and non-linear data structure operations

CO3:Suggest and use the appropriate linear / non-linear data structure operations for a given problem

CO4:Apply appropriate hash functions that result in a collision free scenario for data storage and Retrieval

CO5:Implement Sorting and searching algorithms for a given application

GE3361-Professional Development- NAAN Muthalvan Course

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements

CO2:Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding

CO3:Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

V Semester B.E ECE

EC3501 Wireless Communication

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Understand The Concept And Design Of A Cellular System.

CO2:Understand Mobile Radio Propagation And Various Digital Modulation Techniques.

CO3:Understand The Concepts Of Multiple Access Techniques And Wireless Networks

CO4: Characterize a wireless channel and evolve the system design specifications

CO5:Design a cellular system based on resource availability and traffic demands

EC3552 VLSI AND CHIP DESIGN

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: In depth knowledge of MOS technology

CO2: Understand Combinational Logic Circuits and Design Principles

CO3: Understand Sequential Logic Circuits and Clocking Strategies

CO4: Understand Memory architecture and building blocks

CO5: Understand the ASIC Design Process and Testing.

EC3551 Transmission lines and RF Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Explain the characteristics of transmission lines and its losses.

CO2: Calculate the standing wave ratio and input impedance in high frequency transmission lines.

CO3: Analyze impedance matching by stubs using Smith Charts.

CO4: Comprehend the characteristics of TE and TM waves.

CO5: Design a RF transceiver system for wireless communication

CEC365 Wireless Sensor Network Design

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: To be able to design solutions for WSNs applications

CO2: To be able to develop efficient MAC and Routing Protocols

CO3: To be able to design solutions for 6LOWPAN applications

CO4: To be able to develop efficient layered protocols in 6LOWPAN

CO5: To be able to use Tiny OS and Contiki OS in WSNs and 6LOWPAN applications

CEC 352 Satellite Communication

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Identify the satellite orbits

CO2:Analyze the satellite subsystems

CO3:Evaluate the satellite link power budget

CO4:Identify access technology for satellite

CO5:Design various satellite applications

CEC345 Optical Communication & Networks

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Realize Basic Elements In Optical Fibers, Different Modes And Configurations.

CO2:Analyze The Transmission Characteristics Associated With Dispersion And Polarization Techniques.

CO3:Design Optical Sources And Detectors With Their Use In Optical Communication System.

CO4:Construct Fiber Optic Receiver Systems, Measurements And Techniques.

CO5:Design Optical Communication Systems And Its Networks.

MX3084 Disaster Risk Reduction and Management

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)

CO2: To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction

CO3: To develop disaster response skills by adopting relevant tools and technology

CO4: Enhance awareness of institutional processes for Disaster response in the country

CO5: Develop rudimentary ability to respond to their surroundings with potential

Laboratory

EC3561 VLSI Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Write HDL code for basic as well as advanced digital integrated circuit

CO2: Import the logic modules into FPGA Boards

CO3: Synthesize Place and Route the digital Ips

CO4: Design, Simulate and Extract the layouts of Digital & Analog IC Blocks using

EDA tools

CO5: Test and Verification of IC design

VII Semester B.E. ECE

EC8701 Antennas And Microwave Engineering

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Apply the basic principles and evaluate antenna parameters and link power budgets

CO2:Design and assess the performance of various antennas

CO3:Design a microwave system given the application specifications

EC8751 Optical Communication

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Realize basic elements in optical fibers, different modes and configurations.

CO2:Analyze the transmission characteristics associated with dispersion and polarization techniques

CO3:Design optical sources and detectors with their use in optical communication system

CO4:Construct fiber optic receiver systems, measurements and coupling techniques.

CO5:Design optical communication systems and its networks.

EC8791 Embedded And Real Time Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Describe the architecture and programming of ARM processor

CO2:Outline the concepts of embedded systems

CO3:Explain the basic concepts of real time operating system design

CO4:Model real-time applications using embedded-system concepts

EC8702 Ad Hoc And Wireless Sensor Networks

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Know the basics of Ad hoc networks and Wireless Sensor Networks

CO2:Apply this knowledge to identify the suitable routing algorithm based on the network and user requirement

CO3:Apply the knowledge to identify appropriate physical and MAC layer protocols

CO4:Understand the transport layer and security issues possible in Ad hoc and sensor networks.

CO5:Be familiar with the OS used in Wireless Sensor Networks and build basic modules

GE8071 Disaster Management

Course Outcomes COs: Upon completion of the course, the student should be able to:

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

OCH752 Energy Technology

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1. Understand the concepts of energy usage and global energy scenario.

CO2: Identify the working principle of different resources of energy.

CO3: Understand the field applications of solar energy, Geothermal & tidal energy, Winds energy and to know how it can be tapped.

CO4: Identify the Biomass sources and develop design parameters for equipment to be used in chemical process industries and its impact on environment.

EC8711 Embedded Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Write programs in ARM for a specific Application

CO2:Interface memory, A/D and D/A convertors with ARM system

CO3: Analyze the performance of interrupt

CO4: Write program for interfacing keyboard, display, motor and sensor.

CO5: Formulate a mini project using embedded system

EC8761 Advanced Communication Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Analyze the performance of simple optical link by measurement of losses and Analyzing the mode characteristics of fiber

CO2:Analyze the Eye Pattern, Pulse broadening of optical fiber and the impact on BER

CO3:Estimate the Wireless Channel Characteristics and Analyze the performance of Wireless Communication System

CO4: Understand the intricacies in Microwave System design

Even Semester 2023-24

IV Semester B.E ECE

EC3401 Networks and Security

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Explain the Network Models, layers and functions.

CO2: Categorize and classify the routing protocols.

CO3: List the functions of the transport and application layer.

CO4: Evaluate and choose the network security mechanisms.

CO5: Discuss the hardware security attacks and countermeasures.

EC3451 Linear Integrated Circuits

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1 : Design linear and nonlinear applications of OP – AMPS

CO2: Design applications using analog multiplier and PLL

CO3: Design ADC and DAC using OP - AMPS

CO4: Generate waveforms using **OP** – **AMP** Circuits

CO5: Analyze special function ICs

EC3492 Digital Signal Processing

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Apply DFT for the analysis of digital signals and systems

CO2:Design IIR and FIR filters

CO3: Characterize the effects of finite precision representation on digital filters

CO4:Design multirate filters

CO5:Apply adaptive filters appropriately in communication systems

EC3491 Communication Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Gain knowledge in amplitude modulation techniques

CO2: Understand the concepts of Random Process to the design of communication systems

CO3: Gain knowledge in digital techniques

CO4: Gain knowledge in sampling and quantization

CO5: Understand the importance of demodulation techniques

GE3451 Environmental Sciences and Sustainability

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.

CO2:To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.

CO3:To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.

CO4:To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.

CO5:To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

Laboratory

EC3461 Communication Systems Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Design AM, FM & Digital Modulators for specific applications

CO2:Compute the sampling frequency for digital modulation

CO3:Simulate & validate the various functional modules of Communication system.

CO4:Demonstrate their knowledge in base band signaling schemes through implementation of digital modulation schemes.

CO5:Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of Communication system.

EC3462 Linear Integrated Circuits Laboratory

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Analyze various types of feedback amplifiers

CO2: Design oscillators, tuned amplifiers, wave-shaping circuits and multivibrators

CO3:Design and simulate feedback amplifiers, oscillators, tuned amplifiers, wave- shaping circuits and multivibrators, filters using SPICE Tool

CO4:Design amplifiers, oscillators, D-A converters using operational amplifiers.

CO5:Design filters using op-amp and perform an experiment on frequency response

VI Semester B.E ECE

ET3491 Embedded Systems and IOT Design				
Course Outcomes COs: Upon completion of the course, the student should be able to:				
CO1: Explain the architecture and features of 8051				
CO2: Develop a model of an embedded system				
CO3: List the concepts of real time operating systems.				
CO4: Learn the architecture and protocols of IoT.				
CO5: Design an IoT based system for any application.				

CS3491	Artificial	Intelligence	and Machine	Learning
COSTIL.	ai uniciai	Internation (anu macilin	Learming

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Use appropriate search algorithms for problem solving

CO2: Apply reasoning under uncertainity

CO3: Build supervised learning models

CO4: Build ensembling and unsupervised models

CO5: Build deep learning neural network model

OEE351 Renewable Energy System

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Attained knowledge about various renewable energy technologies

CO2: Ability to understand and design a PV system

CO3: Understand the concept of various wind energy system

CO4: Gained knowledge about various possible hybrid energy systems

CO5: Attained knowledge about various application of renewable energy technologies

CEC338 EMI/EMC Pre Compliance Testing

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Perceive the various types and mechanisms of Electromagnetic Interference

CO2: Propose a suitable EMI mitigation technique

CO3: Evaluate EMI coupling & control principles

CO4: Explain the importance receivers & Analyzer functionalities

CO5: Inspect the design issues in EMI/EMC

CBM355 Medical Imaging Systems

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Describe the working principle of the X-ray machine and its application

CO2: Illustrate the principle computed tomography

CO3: Interpret the technique used for visualizing various sections of the body using Magnetic Resonance Imaging.

CO4: Demonstrate the applications of radionuclide imaging.

CO5: Analyze different imaging techniques and choose appropriate imaging equipment for better diagnosis and outline the methods of radiation safety.

CEC347 Radar Technologies

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1: Identify the Radar parameters

CO2: Differentiate various radar types

CO3: Evaluate different tracking and filtering schemes

CO4: Apply signal processing in target detection

CO5: Design Radar transmitter and receiver blocks

MX3089 Industrial Safety

Course Outcomes COs: Upon completion of the course, the student should be able to:

CO1:Understand the basic concept of safety.

CO2:Obtain knowledge of Statutory Regulations and standards.

CO3:Know about the safety Activities of the Working Place

CO4:Analyze on the impact of Occupational Exposures and their Remedies

CO5:Obtain knowledge of Risk Assessment Techniques.